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The heating of a micropolar liquid due to viscous energy dissipation as it flows 
in a plane channel when one of the plates moves at a constant velocity relative 
to the other is investigated. 

The heating of a micropolar liquid (MPL) due to viscous energy dissipation during 
Poiseuille flow in a plane channel was considered in the first part of the present article 
[I]. The investigation of the dissipative heating of an MPL in the case of Couette flow is 
of particular interest, since it is just flows close to this type which occur in a number of 
cases in practice. For example, under certain conditions the flow of a lubricant or the 
behavior of magnetic-liquid seals can be described by Couette flows in a first approximation. 

Below we investigate the heating of an MPL due to viscous energy dissipation as it 
flows in a plane channel when one of the plates moves at a constant velocity relative to the 
other. 

As in the previous case, suppose that the liquid is incompressible, its physical proper- 
ties are constant, mass forces and their moments can be neglected, and hydrodynamics and heat 
exchange are stabilized. 

We match the x axis of the Cartesian coordinate system with the upper face of the lower 
stationary plate of thickness H~. The upper plate of thickness HI, located at a distance h 

from the lower one, moves at a constant velocity V in the direction of the x axis. As ear- 
lier, we analyze the hydrodynamic problem independently of the thermal problem, i.e., we 
assume that dissipative heating of the liquid has little effect on its properties. 

Under the adopted assumptions, the system of differential equations for the nonzero com- 
ponents of the velocity and microrotation vectors, vx(y) and vz(y) [2], is written in the 
form 

d~,  dr, = O, ( ! ) 
+ au 

6~v, dr=, _ 2 uv, = 0. (2) 7 d-~ z dy 

Solving i t  wi th  the boundary cond i t ions  

v,(0) = 0, v=(h) = V, ,i(0) = - -  T \ - -~ ' - /v-*  - - - 2 - \  dy:,,~ (3) 

we a r r i v e  a t  the express ions  fo r  Vx and Vz, 

where 

(4) 

vz(y)= kVW ( c h k y + N  " P 2hL shky---~-), (5) 

y=-  Y---- L=kP+2N, k - - - -~h ,= i2F+x  n)l/~h,N=l--c-'--'~ 
h' , p + x  ? sl~ ' 
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Fig. I. Velocity vxlV (a) and microrotation ~zh/V (b) in 
the channel: a) k = 2.5, ~ = I, 6o = I0 ~ (I); I0 (2); 2 (3); 
0 (4); b) 60 = 5, ~ = I, k = 5 (I); 2 (2); 1 (3); 6o = 2, k = 
2, E = 0.2 (4); 0.4 (5); 0.8 (6); 1 (7). 

2 W=I+ ~=l--a, 6o= -, ~+ �9 e = i + ~8--~-' ' ~N 2 

Curves of vx/V and ~2h/V constructed from (4) and (5) are shown in Fig. I. Allowance 
for the internal microstructure of the liquid when calculating the velocity Vx results in 
its increase in the half of the channel cross section adjacent to the moving wall and in its 
decrease in the other half (Fig. la). A numerical analysis of Eq. (4) shows that in this 
case the variation of vx/V as a function of h has a maximum corresponding to the value k = 
2.5, and also grows as ~ and 60 increase. For 60 < 1 the variation of vx/V in the region of 
O. I ~ 0.9 does not exceed 5% for any k and ~. At the same time, ~zh/V has a monotonic 
dependence on k, as follows from the curves for the microrotation presented in Fig. lb. It 
is seen that the smaller h for constant 6o, k, and ~ or the larger ~ for constant 60, k, and 

�9 ~ ~ ~ " 
h, the more the mlcrorotatlon dlffers from , 1.e., the more strongly the micropolarity of 
the liquid is manifested. 

In the case under consideration the expression for the viscous-energy-dissipation func- 
tion is similar to that used in the first part of the present article: 

\ du / ~ dy + ~' ~' + ' ~ \  ay / (6) 

Substituting the expressions for the velocity (4) and microrotation (5) into (6), we obtain 

~m (~) = CN L~ [W (I + N z) ch 2 ky + 4 WN chk~hky - -  2 P (ch ~ + Nshky) + pz], (7) 

where ~N = v2.N/h 2 i s  the v i s c o u s - e n e r g y - d i s s i p a t l o n  f u n c t i o n  fo r  a Newtonian l i q u i d  wi th  a 
shear  v i s c o s i t y  ~N. 

Let  the  c o n s t a n t  t empera tu re  Tw of  the o u t e r  s u r f a c e s  of  t h e  channel p l a t e s  be a s s igned .  
We formula te  the  problem of  the  hea t i ng  o f  an MPL wi th  a d i s t r i b u t i o n  f u n c t i o n  of  d i s s i p a t i v e  
hea t  sources  (7) as  f o l l o w s :  

dZT1 = O, Ls d~T3 -- O, (8) Zt d~r' = _@re(y), ~, d :  dy 

dT11 dT2 J ~,! dT~ I = ~1 , ~ = 

_ ~, dTs [ , Tx (h + Hi) = Tw, T, (-- Hz) = Tw., T~ (h) = T~ (h), T~ (0) 
- ' d~ l.=o " (9) 

= T~ (0). 
Here the indices I, 2, and 3 indicate the temperature distributions in the moving plate, the 
liquid, and the fixed plate, respectively. 

Integrating the system of equations (8) with the boundary conditions (9), after a 
series of transformations we obtain an expression for the temperature distribution in the 
liquid, 
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where 
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Fig. 2. Fig. 3. 

Fig. 2. Temperature field in a channel with Is/A~ ffi 78, ~ = I00, 
k = 1, 80 = 2, and ~ -~ 0 ( 1 ) :  ~ = 0 .2  ( 2 ) ;  0 .4  ( 3 ) ;  0 .6  ( 4 ) ;  
0.8 ( 5 ) ;  I ( 6 ) .  

F i g .  3. T e m p e r a t u r e  f i e l d  i n  MPL (6o = 2 ,  g = 1) i n  d i f f e r e n t  
c h a n n e l s  w i t h  k = 10 ( 3 ) ;  5 ( 5 ) ;  4 ( 6 ) ;  3 ( 7 ) ;  2 ( 8 ) ;  ! ( 9 ) ;  0.1 
(10) and i n  w a t e r  (k ffi 7, 6og = 1.45) w i t h  6o = 7 .25 ,  g = 0 .2  (2) 
and 60 = 1 .45 ,  g = I (4) ; c u r v e  I c o r r e s p o n d s  to  a Newton ian  l i q u i d  
(60 + 0 ) .  )'s/)'Z = 78 ,  Z = 100. 

WN sh2kv lV ( l+N")  ch2kT"] 1 / kPy ~ 2 
2 4 v J - T ~ , - - T - /  +c,~+c,, (~o) (chk~ + Nshk}) -'r- kWN~/ -l-, 

) [ t r2"N s') 
�9 k "- V- + , 

c~ = ( T  & + t, + ~ 
XI 

X., \ L ~" 

i [ W(l+~)sh2 s = T  9. 

1 [ W ( l + N 2 ) c h 2 k  + 

q=-~-  ' 4 
1 [ W(1 +N') 

Z =  k--? ' 4 
L 

§ 
k + 2IlzN sh~k --  2 PNchk --  2 Pshk + kl~]; 

IP'N sh 2 k 2 2 P c h k - - 2 P N s h k - - k W N + - ~ - l ;  

- - 2  P]; 

T, -- Tw 
v2~N ~ l  

As i n  Ref .  1, l e t  As/A~ = 78 and l ,  = Z2 = Z = 100. I n  F i g s .  2 and 3 we p r e s e n t  t e m p e r -  
a t u r e  p r o f i l e s  f o r  t h e  f low o f  an MPL w i t h  d i f f e r e n t  v a l u e s  o f  the  b o u n d a r y - c o n d i t i o n  p a r a m -  
e t e r  ~ i n  t he  same c h a n n e l  (F ig .  2) and i n  c h a n n e l s  o f  d i f f e r e n t  s i z e  h w i t h  ~ = I (F ig .  3 ) .  

As s e e n  f rom the  f i g u r e s ,  a l l o w a n c e  f o r  t h e  i n t e r n a l  m i c r o s t r u c t u r e  o f  the  l i q u i d  when 
c a l c u l a t i n g  t h e  t e m p e r a t u r e  i n  the  c h a n n e l  a l w a y s  r e s u l t s  i n  i t s  i n c r e a s e .  T h i s  r e s u l t  i s  
t h e  d i r e c t  o p p o s i t e  o f  t h a t  o b t a i n e d  i n  [1] f o r  P o i s e u i l l e  f l o w ,  where  a l l o w a n c e  f o r  i n t r i n -  
s i c  p a r t i c l e  r o t a t i o n  r e s u l t s  i n  a d e c r e a s e  i n  T 2 ( y ) ,  b u t  i s  n o t  a t  v a r i a n c e  w i t h  i t  a t  a l l .  
The p o i n t  i s  t h a t  t he  c h a r a c t e r  o f  t he  a s s i g n m e n t  o f  t h e  " c a u s e "  r e s u l t i n g  i n  MPL f l o w  i s  
d i f f e r e n t  i n  the  f i r s t  p a r t  [1]  and t h e  p a r t  o f  t he  p r e s e n t  a r t i c l e  u n d e r  c o n s i d e r a t i o n  h e r e .  

I n  P o i s e u i l l e  f l o w  [1]  i t  was more a p p r o p r i a t e  to  c o n s i d e r  a s o u r c e  o f  m o t i o n  w i t h  a 
dynamic c h a r a c t e r  -- a p r e s s u r e  d rop  ( r a t h e r  t h a n  an a s s i g n e d  v o l u m e t r i c  f l o w  r a t e ,  f o r  
e x a m p l e ) .  I n  t h e o r e t i c a l l y  i n v e s t i g a t i n g  the  f l ow  o f  a l i q u i d  w i t h  a s p e c i f i c  m / c r o s t r u c t u r e  
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Temperature field in a channel 
.9 for 6 = 0 (i); 
7 (5); 10 (6). 
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Fig. 
with k = i and ~ = 0 
i (2); 3 (30; 5 (4); 

under a given pressure drop within the framework of the models of a micropolar and a New- 
tonian liquid, in the latter case under certain conditions in which the micropolarity of the 
medium is noticeably manifested, we use an overstated value of the flow velocity, since the 
tabular value of the coefficient of shear viscosity of a given liquid is less than its actual 
"equivalent" viscosity. Therefore, when a liquid with a microstructure is treated as a New- 
tonian liquid, the calculated values of T2(y) prove to be overstated. 

In an investigation of Couette flows one assigns a "cause" of motion with a kinematic 
character: the relative velocity of motion of the channel walls. The viscous-energy-dissi- 
pation function, calculated within the framework of the model of a Newtouian liquid, is 
determined by the velocity gradient. Allowance for the internal microstructure of the liquid 
in the calculation of the velocity gradient does not result in its great variation in an 
average over the cross section (see Fig. la). However, microrotatlon does make its contri- 
bution to the value of the viscous-dissipation function (6). Therefore, the dissipative heat- 
ing calculated with allowance for the intrinsic rotation of liquid particles is greater than 
that found within the framework of the model of a Newtonian liquid. 

The quantity T2(y) increases as h decreases and ~ grows. As k + 0, 

2 

where'(y) corresponds to a calculation without allowance for the internal microstructure 
(curve I of Fig. 3). Even with k = 0.1 a decrease in k results in hardly any change in the 
temperature profile. Curves 2 and 4 in Fig. 3 correspond to two of the possible combinations 
of the parameters 6o and ~ for water, for which 606 = 1.45 [I]. 

In Fig. 4 we present curves of T2(y) corresponding to flows of MPL with different micro- 
structure characteristics in channels with different transverse sizes h. With 6o = TO, k = 
I, and ~ = 0.9, for example, a11owance for the internal microstructure of the liquid when 
calculating the temperature in the channel results in an almost fourfold increase in it. 

The velocity of Couette flows is very high in practice, in the flow of a lubricant, for 
example. In this case the temperature increase of the liquid due to viscous energy dissipa- 
tion can be very pronounced. In such cases, such as in the determination of the optimum 
modes of operation of lubricating devices, it can prove necessary to allow for the intrinsic 
rotation of lubricant particles when estimating the influence of dissipative heating on its 
properties. 

NOTATION 

h, distance between the plates; H~, H2, thicknesses of the moving and fixed plates, re- 
spectively; V, velocity of plate motion; Vx, Vz, components of velocity and mlcrorotation 
vectors; K, ~, y, material constants of the micropolar liquid; a, parameter of the boundary 
conditions; r viscous-energy-dissipation function; %s, %1, coefficients of thermal conduc- 
tivity of_wall materia~ and liquid; T, temperature; Tw, temperature of outer surfaces of 
channel; w �9 (I/2)rot v, vorticity vector. 
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FLUCTUATIONS AND TRANSPORT IN AN ELECTRIC FIELD 

Yu. A. Buevlch and V. V. Butkov UDC 5 3 2 . 5 : 5 3 7  

It is shown that thermodynamic fluctuations in a liquid in an applied electric 
field generate microconvective motion causing mass and heat dispersion. The cor- 
responding dispersion coefficients can be comparable in value or even exceed the 
coefficients of molecular diffusion and thermal conductivity. 

An applied electric field can significantly stimulate heat- and mass-transport processes 
in liquids with very different electric and magnetic properties [I-3]. The usual interpre- 
tation is that this is due to the appearance of specific convective motions in the liquid 
from Coulomb pondermotive forces and Lorentz forces and also from convective transport of 
volume charge. 

However, these effects do not exhaust all possible effects from the field, since many 
examples are known where heat and mass exchange are stimulated in situations where convection 
does not appear. In addition, the necessary condition for the appearance of electro or mag- 
netohydrodynamic convection is that there be nonuniformities in either the properties of the 
liquid or the external field. Stimulation of heat and mass transport in an applied field is 
observed in conditions when both the liquid and the field can certainly be considered as uni- 
form. Therefore, besides convection, one concludes that there is another fundamental effect 
of the electric field on transport processes, in general not involving the violation of mech- 
anical stability of the liquid. 

It is shown below that the latter effect comes from the appearance of additional micro- 
convective dispersion in a liquid which is macroscopically at rest. This dispersion is due 
to random small-scale fluctuations which appear due to the interaction of the external field 
with random fluctuations of the volume charge. The latter is in turff caused by the usual 
thermodynamic fluctuations. Since the purpose of the present paper is to demonstrate the 
existence of this effect, we consider only the simplest examples in a uniform applied elec- 
tric field and with several simplifying assumptions. 

Fluctuations and Dispersion. At small Reynolds n,~bers the equations of hydrodynamics 
in the presence of the pondermotive force are given by 

?Or/Or = - -  VP + F AV + pE, divv = 0. ( 1 ) 

As i n  [ 4 ] ,  t he  above  e x p r e s s i o n  f o r  t h e  p o n d e r m o t i v e  f o r c e  i s  a l s o  assumed to  be v a l i d  f o r  a 
c o n d u c t i n g  l i q u i d  i f  t h e  c o n d u c t i v i t y  can be  made as  s m a l l  as  d e s i r e d .  The u n p e r t u r b e d  s t a t e  
i s  the  s t a t e  o f  r e s t  where  v = O, p = c o n s t ,  p = O, b u t  g = Boffffi0. 

The t h e o r y  o f  h y d r o d y n a m i c  f l u c t u a t i o n s  [5] r e d u c e s  t o  (1) and t h e  g e n e r a l  e q u a t i o n  o f  
h e a t  t r a n s p o r t ,  where  t he  v a r i a b l e s  a r e  r e g a r d e d  as  s m a l l  f l u c t u a t i o n s  and l o c a l  random 
s t r e s s e s  and h e a t  f l u x e s  a r e  a d d e d  t o  t h e  e q u a t i o n s .  I t  i s  t h e n  n o t  d i f f i c u l t  t o  o b t a i n  
directly equations for the correlation functions [6]. Here we will assume that the hydro- 
dynamic fluctuations are generated mainly by fluctuations in the pondermotive force, so that 
we do not need to introduce additional random terms in (l). The spectral properties of the 
fluctuations are studied with the help of the correlation theory of stationary random pro- 
cesses [7]: any random function f of the coordinates r and time t is represented as a 
Fourier-Stieltjes integral with random measure dZf: 
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